Chaos

H

A

O

Es gibt kein Gesetz, mit Ausnahme

des einen, da es kein Gesetz gibt.

(John A. Wheeler)

I n h a l t

B e i s p i e l e

z u r

C h a o s f o r s c h u n g

Fraktale Geometrie

Aller Anfang ist Chaos

Alte Völker glaubten, die Kräfte des Chaos und der Ordnung seien ein Teil einer unbehaglichen Spannung. Sie stellten sich etwas Unermeßliches und Kreatives vor. „Tohu wabohu“ – die Erde war wüst und lleer, das Chaos vor der göttlichen Schöpfung (Altes Testament, 1. Buch Mose). Kosmologien aller Kulturen stellten sich einen Anfangszustand vor, in dem Chaos oder Nichts vorherrschten, aus dem die Wesen und die Dinge hervorbrachen.

In der babylonischen Schöpfungsgeschichte hieß das Chaos Tiamat, die Urmutter des Alls. Diese Götter verkörperten die verschiedenen Gesichter des Chaos. Zu Beispiel gab es einen Gott, der die grenzenlosen Weiten ursprünglicher Gestaltlosigkeit symbolisierte, und einen Gott, der Verborgenere genannt, der die Unberührbarkeit und Nichtwahrnehmbarkeit darstellte, die im CChaos lauert. Die Lehre, daß das Chaos doch einer gewissen Ordnung unterliegt, wie es in der modernen Wissenschaft dargestellt wird, mußte noch Tausende von Jahren warten.

Die mythische Vorstellung, daß die kosmische Schöpferkraft auf einer wechselseitigen Beziehung zwischen Ordnung und Unordnung bberuht überlebte sogar noch die monotheistischen Kosmologien wie die des Christentums. Es ist die Rede vom Kampf der Gottheit gegen die Mächte des Chaos. Die Sintflut, Satan und die Peiniger Jesu Christi wurde als böse Gesandten des Chaos gesehen.

Schon das Wort Unordnung legt nahe, daß Ordnung der Unordnung vorangeht und sie überragt. Die griechischen Philosophen impften dem Chaos eine wissenschaftliche Haltung ein. Thales, Anaximander und Anaxagora schlugen vor, daß eine besondere Substanz oder Energie – wie Wasser oder Luft – in chaotischer Bewegung gewesen sei und daß aus dieser Substanz heraus die verschiedenen Gestalten im Universum herauskristallisiert wären. Aristoteles distanzierte sich noch weiter vom Chaos. Er spekulierte daß die Ordnung alles durchdringt und immer raffinierter und komplexer wird.

Das Mittelalter vermischte ddie Theorien und stellte sie gegenüber. Zur Zeit Galileis, Keplers, Descartes’ und Newton hatte der wissenschaftliche Geist mit seiner Unterdrückung des Chaos die Oberhand gewonnen. Newtons Gesetze der Himmelsmechanik und Descartes’ Koordinaten erweckten den Anschein, daß alles mathematischen oder mechanischen Grundsätzen unterliegt.

Man konnte sich vorstellen, daß eines Tages eine einzige mathematische Gleichung reicht, um alles zu erklären.

Das 19. Jahrhundert aber stellte diesen Zauber auf eine harte Probe. Zum Beispiel hatten schon um die Mitte des 18. Jahrhunderts Forscher begonnen, sich ddarüber den Kopf zu zerbrechen, warum es ihnen nicht gelang, eine sich für immer bewegende Maschine, ein Perpetuum mobile, zu erfinden. Dummerweise stellte sich beim Betreiben jeder Maschine heraus, daß ein Teil der eingespeisten Energie in eine Form überging, die man nicht zurückgewinnen und wiederbenutzen konnte. Die Energie war desorganisiert, chaotisch geworden. Dies führte zum Entropiegesetz und zur Begründung der Wärmelehre oder Thermodynamik. Bedeutet die Tatsache, daß jede Maschine ständig neue Energie braucht und daß alle Gestalten unausweichlich unter der Lawine der Entropievermehreung zermalmt werden und zerfallen, bedeutet dies, daß das Chaos im Prinzip ebenso mächtig ist wie die Ordnung?.

In den siebziger Jahren des 19. Jahrhunderts versuchte der Wiener Physiker Ludwig Boltzmann der Herausforderung zu begegnen, indem er bewies, daß Newtons Mechanik trotz allem auf dem reduktionistischen Niveau (Reduktion: das Zurückführen; Reduktion eines komplizierten Sachverhalts oder Begriffes auf einen einfachen) der Atome und Moleküle gültig ist. Nur wird es in komplizierten Systemen, wo Trillionen von Atomen und Molekülen herumtorkeln und einander stoßen, immer weniger wahrscheinlich, daß diese geordnete Beziehungen zueinander aufrechterhalten. Boltzmann führte die Wahrscheinlichkeit in die Physik ein.

Charles Darwin und Alfred Russel Wallace stellten eine Theorie auf, die erklärte wie neue Lebensformen erscheinen. Der Zufall führte dabei nicht zum DDurcheinander und Zerstörung komplexer Ordnung, sondern erzeugt hier Zufallsvariationen und Individuen wie es eben nur das Leben schafft. Die Menschheit sah sich nun als Ergebnis unwahrscheinlicher Zusammenstöße.

Als die Ingenieure des 19. Jahrhunderts ihre neuen Brücken, Dampfschiffe und anderen technischen Wunderwerke errichteten, so begegnete ihnen immer wieder Unordnung in Form plötzlicher Veränderungen, die so ganz anders waren als das langsame Wachstum der Entropie. Platten wölbten sich unerwartet auf, und Baustoffe brachen. Solche Erscheinungen forderten die Mathematik heraus. Der Wissenschaft erschien ein Phänomen gesetzmäßig, wenn die Bewegungen sich im Sinne eines Schemas von Ursache und Wirkung durch eine Differentialgleichung darstellen ließen. Newton führte die Idee des Differentials erstmals in seinen berühmten Bewegungsgleichungen ein, die zeitliche Veränderungen mit Kräften in Beziehung setzten. Von nun an verließen sich die Wissenschaftler auf lineare Differentialgleichungen. Kleine Wirkungen rufen kleine – große Veränderungen große Wirkungen hervor. Große Wirkungen kommen zustande, indem sich kleine Veränderungen aufsummierten. Das sollte allerdings nicht der Weisheit letzter Schluß sein.

Es gibt nämlich auch noch nichtlineare Gleichungen. Sie kommen in der Beschreibung unstetiger Vorgänge vor – wie etwa Explosionen, plötzlichen Materialbrüchen oder hohen Windgeschwindigkeiten. Mathematiker konnten nur die allereinfachsten nichtlinearen Gleichungen in Spezialfällen lösen, und allgemeines nichtlineares Verhalten blieb ein Geheimnis. Um die mechanischen MMeisterleistungen jedoch zu vollbringen, war es notwendig auf „lineare Näherungen“ zurückzugreifen. Diese sind eine besondere Art der Differentialgleichung. Sie stützen sich auf vertraute Intuitionen und den zuverlässigen reduktionistischen Zusammenhang zwischen Ursache und Wirkung. Noch einmal hatten die Wissenschaftler den alten reduktionistischen Zauber wirksam erhalten.

Dieser Zauber hielt bis in die siebziger Jahre an, als mathematische Fortschritte und das Aufkommen immer schnellerer Computer die Wissenschaftler in die Lage versetzten, komplexe und nichtlineare Gleichungen zu untersuchen. Diese seltsame Art der Mathematik trieb die turbulente Wissenschaft an.

Beispiele zur Chaosforschung

Schmetterlingseffekt:

Der Meteorologe Edward N. Lorenz entdeckte im Jahr 1963 den Schmetterlingseffekt bei dem Versuch, per Computer die Wettervorhersage zu präzisieren. Als er mit dem Computer eine Berechnung wiederholte, stellte er fest, daß sich die neue Zahlenreihe – der Wetterverlauf – stark von der vorherigen unterschied. Zunächst dachte er an einen Computerfehler, doch bei genauerer Betrachtung entdeckte er die tatsächliche Ursache: Lorenz hatte den Computer ursprünglich mit sechs Dezimalstellen gefüttert – 0,506127 -, die zweite Berechnung aber nur mit 0,506 als Ausgangszahl durchgeführt, da er die verbleibende Abweichung in dem verschwindend geringen Verhältnis von eins zu 1000 für unbedeutend hielt. Doch genau diese scheinbar zu vernachlässigende Differenz – im übertragenen Sinn vergleichbar mit

dem durch den Flügelschlag eines Schmetterlings ausgelösten Windhauch – führt zu einer extremen Wirkung.

Das Phänomen ist weltweit als Schmetterlingseffekt bekannt. Diese starke Abhängigkeit dynamischer Systeme von den Anfangsbedingungen erklärt, warum der wissenschaftliche Glaube an die Wettervorhersage ein Wunschdenken sein muß: Entgegen den logischen Voraussetzungen der klassischen Mechanik, wonach kleine Ursachen nur kleine Wirkungen haben, können in komplexen, nichtlinearen Systemen nämlich gerade kleinste Ursachen allergrößte Wirkung nach sich ziehen.

Die große Woge:

In seinem Farbholzschnitt „Die große Woge“ hat der japanische Maler ddes 18. Jahrhunderts, Katsushika Hokusai, all die Aspekte der fraktalen Welt, in die wir eintreten werden, aufs herrlichste eingefangen. Diese unnatürliche Welle wird als „Soliton“ oder solitäre Welle bezeichnet. Ein Ingenieur und Schiffsbauer namens Russel machte eines Tages im Jahre 1834 eine Entdeckung die ihn sein lebenlang nicht mehr losließ. Durch Zufall ergab es sich, daß ein normales Schifferboot eine Riesenwelle auslöste. Russel verfolgte die Welle bis er sie aus den Augen verlor. Sie sollte zum Ausgangspunkt seiner revolutionären Entwürfe vvon Schiffsrümpfen werden.

Die Physiker haben eine Technik entwickelt, die es ihnen erlaubt, sich eine beliebig komplizierte Wellenform als Kombination von lauter Sinuswellen vorzustellen. Die Sinuswelle ist die einfachste Form, die eine Welle annehmen kann. Jede Sinuswelle ist durch ihre Frequenz ccharakterisiert. Fügt man mehrere einfache Sinuswellen zusammen, so erzeugen sie eine komplexere Gestalt. Der Wasserhügel, der eine Welle auf der Oberfläche eines Kanals ausmacht, läßt sich als Zusammensetzung einer Menge von Sinuswellen beschreiben, die alle verschiedene Frequenzen haben. In Wasser pflanzen sich aber Wellen verschiedener Frequenz mit verschiedenen Geschwindigkeiten fort. Weil es nichts gibt, was diese verschiedenen Frequenzen zusammenhalten könnte, verändert der Hügel dieser komplexen Welle seine Form; der Gipfel beginnt sich aufzusteilen und die Hauptmasse zu überholen. Die Auflösung von Wellen in viele kleinere Störungen und schließlich das Brechen im Chaos nennt man Dispersion.

Offensichtlich aber trat in der von Russel beobachteten Welle keine Dispersion auf. Heute weiß man, daß die Welle, die Russel sah, ihre Stabilität nichtlinearen Wechselwirkungen verdankte, ddie die individuellen Sinuswellen aneinanderkoppelten. Diese Nichtlinearitäten wurden in der Nähe des Kanalbodens wirksam und brachten die einzelnen Sinuswellen dazu, sich aneinander zurückzukoppeln, so daß sie gewissermaßen das Gegenteil von Turbulenz erzeugten. So schaukelte sie sich nicht bis zum Brechen auf, sondern koppelten sich bei einem kritischen Wert die Sinuswellen aneinander. Wenn eine Sinuswelle versuchte, schneller zu werden und aus dem Soliton zu entwischen, so wurde sie durch ihre Wechselwirkung mit den anderen zurückgehalten.

Vergleichbar ist dieses Phänomen mit einem Marathonlauf. WWenn das Rennen beginnt, fangen die Läufer an, sich voneinander zu trennen, und nach kurzer Zeit ist der Haufen weit verteilt. Dies ist genau das, was einer gewöhnlichen Welle zustößt. Eine solitäre Welle jedoch ähnelt der Gruppe der besten Läufer in diesem Rennen. Meile um Meile bleiben sie durch Rückkoppelung miteinander verbunden. Sobald einer versucht, sich nach vorne zu schieben, holen die anderen auf, und die Gruppe hält zusammen.

Russel entdeckte rasch, daß eine hohe, dünne Welle eine kurze, dicke verfolgen und sie einholen konnte. Er fand auch heraus, daß die Existenz dieser Wellen mit der Tiefe des Kanals zu tun hatte. Wäre der Union Canal viel tiefer gewesen, so hätte er sein Soliton wohl nie gesehen. Russel war vorausblickend genug, um klar zu sehen, daß die Bedeutung seiner Translationswelle weit über den Union Canal hinausreichen würde. Es gelang ihm, durch Anwendung der Prinzipien dieser Welle zu beweisen, daß man den Knall einer fernen Kanone stets vor dem Abschußbefehl hört, weil der Kanonenschall sich als solitäre Welle ausbreitet, die eine höhere Fortpflanzungsgeschwindigkeit besitzt.

Turbulenz:

Überall in der Natur herrscht Turbulenz: in Luftströmungen, in rasch fließenden Flüssen beim Umspülen von Felsen oder Brückenpfeilern, in der glutflüssigen Lava, die sich von einem Vulkan herabwälzt, oder iin Wetterkatastrophen wie Taifungen und Flutwellen. Pumpen und Turbinen oder auch Lastwagen auf der Autobahn beginnen zu rütteln, Kaffeetassen im Flugzeug schwapen über. Turbulenz im Blut kann Adern beschädigen, indem sie zur Ablagerung von Fettsäuren auf den Gefäßwänden führt.

Die Turbulenz hat schon früher die großen Denker fasziniert. Einer der ersten war Leonardo da Vinci, der viele Studien anstellte und geradezu von der Idee besessen war, daß eines Tages eine große Sinnflut die Erde verschlingen müßte. Im 19. Jahrhundert erregte die Turbulenz die Aufmerksamkeit von Physikern wie von Helmholtz, Lord Kelvin, Lord Raleigh und eine ganze Schar weniger bekannter Wissenschaftler, die wesentliche experimentelle Beiträge lieferten. Trotzdem blieb sie ein vernachlässigtes Forschungsgebiet, das Gebiet blieb für die Forschung ziemlich undurchsichtig.

Der Grund für das jüngste Interesse an Systemen mit so vielen Freiheitsgraden und so unermeßlich komplexer Dynamik liegt teilweise in der Fülle neuer raffinierter Untersuchungsmethoden, die es ermöglichen, mitten in turbulente Ereignisse hineinzugehen und dort Daten über die Vorgänge zu gewinnen. Die Entwicklung der superschnellen Computer erlaubt es den Forschern, die überquellende Vielfalt der Ergebnisse jener nichtlinearen Gleichungen graphisch darzustellen, die man benützt, um Turbulenz mathematisch zu verfolgen. Trotzdem lassen sich die Gesetze der Turbulenz nur allmählich erschlißen. Die meisten Fortschritte betreffen nnoch immer nur die ersten Schritte auf dem Weg zu Turbulenz.

Ein großer Stein legt sich dem Bach in den Weg, aber dieser teilt sich einfach und umfließt das Hindernis glatt und geschmeidig. Fügt man dem Wasser Farbteilchen hinzu, so lassen sie Strömungslinien sichtbar werden, die sich um den Stein herumliegen und sich nicht weit voneinander entfernen.

Mit Regen strömt der Fluß ein wenig schneller dahin. Nun bilden sich hinter dem Stein Wirbel. Diese sind recht stabil und neigen dazu, sich lange Zeit hindurch an der gleichen Stelle zu halten.

Mit wachsender Srömungsgeschwindigkeit lösen sich Wirbel ab und treiben den Bach hinunter, wobei sie den störenden Einfluß des Steins weit die Strömung hinab tragen. Die Fließgeschwindigkeit schwankt periodisch aufgrund der mittransportierten Wirbel.

Nimmt die Strömungsgeschwindigkeit noch weiter zu, so kann man beobachten, wie die Wirbel ausfransen und scheinbar zusammenhanglose Bereiche wallenden, strudelnden Wassers erzeugen. Zusätzlich zu den periodischen Schwankungen des Flusses kommen nun viel schnellere, unregelmäßige Änderungen: die ersten Vorstufen der Turbulenz.

Wenn schließlich das Wasser mit höchster Geschwindigkeit fließt, so scheint das Gebiet aller Ordnung enthoben zu sein und Messungen der Strömungsgeschwindigkeit liefern dort chaotische Ergebnisse. Echte Turbulenz hat eingesetzt, und die Bewegung jedes winzigen Wasserteilchens scheint völlig zufällig geworden zu sein. Das Gebiet

hat nun so viele Freiheitsgrade, daß alles Vermögen der heutigen Wissenschaft nicht ausreicht, um es zu beschreiben.

Im Verlauf der Entstehung von Turbulenzen kommt es anscheinend zu unendlich vielen Teilungen und immer weiteren Unterteilungen oder Verzweigungen auf immer kleinerer Skala. Gibt es für ihre Anzahl eine Grenze? Eine Flüssigkeit besteht ja schließlich aus Molekülen. Ist es denkbar, daß wahre Turbulenz bis ganz hinunter auf das molekulare Niveau anhält – oder gar darüber hinaus?

Es liegt nahe, sich vorzustellen, daß Systeme am Rande dder Turbulenz sich auf immer kleineren Skalen selbst ähnlich bleiben.

Fraktale Geometrie

Fraktale (lat. Fractum: gebrochen) verdanken ihren Namen der Tatsache, daß ihre Dimensionen nicht ganzzahlig, sondern gebrochen sind. Zum Vergleich: Unser Gehirn hat beispielsweise die fraktale Dimension 2,79 und Wolken 2,35 – wobei die Dimension zwei einer idealen, glatten Ebene entspricht oder die Dimension drei dem geometrisch idealen Raum eines Würfels oder einer Kugel. Fraktale besitzen die Eigenschaft der Selbstähnlichkeit, d. h., daß sich ihre Strukur auf zeitlich oder rräumlich höchst unterschiedlichen Maßstäben und Dimensionen gleicht und immer wieder einander ähnliche Muster erscheinen, die sich unendlich wiederholen können, ohne jemals identisch zu sein.

Die Länge der Küste Großbritanniens

Benoit Mandelbrot ist für die Fraktale Geometrie, was Einstein für die Relativitätstheorie war uund Freud für die Psychoanalyse. Ihm war aufgefallen, daß die Preisschwankungen von Baumwolle auch über längere Zeiträume ein ähnliches Muster aufwiesen. Für einen Computerhersteller untersuchte er danach unerklärliche Störungen bei der Datenübertragung in Telefonleitungen, und entdeckte ähnliche Gesetzmäßigkeiten wie bei den Baumwollpreisen.

Er erkannte die Muster die bei sukzessiven Vergrößerungen immer wiederkehrten (Selbstähnlichkeit). Ein kleiner Birkenast sieht mit seinen Verzweigungen im Prinzip aus wie ein ganzer Baum. Später veröffentlichte er in der Zeitschrift „Science“ einen Artikel über die Länge der Küste Englands. Für ihn war sie unendlich lang, weil je kleiner der Maßstab, desto deutlicher die gebrochenen Strukturen. Folglich ist die Küste Großbritanniens im kleinsten Maßstab betrachtet tatsächlich unendlich lang.

Das gilt für alle fraktalen Gebilde und chaotischen Systeme. Aufgrund der extremen AAbhängigkeit von den Anfangsbedingungen und deren komplexer, rückgekoppelter Entwicklungsdynamik gleicht tatsächlich kein Fraktal dem anderen: Keine Wolke besitzt die exakt gleiche Form einer anderen, kein Baum, kein Herz, kein Gehirn existiert in identischer Form ein zweites Mal.

Die Fraktale Geometrie beschreibt die Natur, wie sie ist: mit gebrochenen, rauhen Kanten, zerklüfteten Oberflächen und vielfach gefalteten Räumen. Denn tatsächlich hat die Wirklichkeit mit der künstlichen, idealisierten Euklidschen Geometrie und ihren glatten Geraden und Kreisen nicht viel zu tun. Ob es sich um WWolkenformationen oder Bergketten handelt, um Blitz und Donner, Blätter oder Bäume, um Lungen- oder Hirnstrukturen – überall zeigt die Fraktale Geometrie, daß die Natur im mikroskopisch Kleinen wie im makroskopisch Großen fraktale Formen hervorbringt.

Monster der Mathematik

Praktisch alle Fraktale lassen sich in der „fraktalen Computer-Ästhetik“ auf spektakuläre Weise durch teilweise relativ einfache Computerspiele oder nichtlineare Gleichungen erzeugen und abbilden.